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Visualizing large longitudinal datasets is not a trivial task. We will present an

application of machine learning (ML) to cluster longitudinal irregular data.

Clustering is an unsupervised ML task which can aid in exploratory data

analysis. Clustering can ease visualization of the various patterns in the

data. It enables automatic identification of subpopulations in the response

(e.g. responders and non-responders). And it can help identify potential

outliers. We also demonstrate how clusters can be used to stratify model

diagnostics by subpopulations to understand which ones are fitted better or

worse, augmenting the model development process.

As an example, we use the dataset from [1]. The authors collated data from

five clinical trials investigating Atezolizumab, an immune checkpoint inhibitor.

In total, 1472 patients with at least three measurements of the diameter of

the target lesion are included, 652 of whom have at least six data points. The

authors also investigated the performance of the following classical

oncology models in real-word data: exponential, logistic, classic Bertalanffy,

general Bertalanffy, classic Gompertz, and general Gompertz. We focus on

patients with 6 or more measurements; and on the general Bertalanffy model

(since it had one of the best performances in the original study).
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As shown in the following figure, the combination of DTW and K-Medoids

was able to split the trends in three visually distinct groups.

The described experiments show the usefulness of clustering for population

stratification. With no intervention, it spotted the existence of relevant

subgroups, which usually isn't trivial. Furthermore, clustering algorithms are

application-agnostic; don't impose constraints on the data; and don't

introduce bias in the interpretation. Additionally, the subpopulations identified

enabled more experiments, including the stratification of model

diagnostics, studying the quality of the fit for each group. Ultimately,

clustering and DTW were shown to be useful tools for exploratory data

analysis and model diagnostics.
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RESULTS

Initially, a combination of DTW and K-Medoids enabled the clustering of the

length-varying tumor data from [1]. DTW (dynamic time warping) is a

method to calculate the dissimilarity between two sequences of numbers,

even if they have different lengths and uneven spacing between elements.

When comparing two sequences, the algorithm maps every element of one

to at least one element in the other. Therefore, DTW can be used to process

trends of measurements of sum of largest lesion diameters, a common

observation in oncology used to keep track of treatment response.

Additionally, the total cost associated with the mapping is determined by

DTW. And K-Medoids, a clustering algorithm, can use these pairwise costs

as distances between series of tumor measurements. The population was

clustered into 3 groups: trends that decrease (“down”), increase (“up”), or

are stable (“fluctuate”). Then, a new set of patients was sampled from the

clusters, containing 10 subjects from “up” and 40 from “down”. And a

nonlinear mixed-effects (NLME) model was fitted to this new group. The

dynamics of this model were based on a reformulation of the classic general

Bertalanffy [2].

And, from left to right, they could be labeled  "fluctuate", "down" and "up". 

However, it is important to point out that K-Medoids doesn't project any 

meaning or interpretation onto the clusters. It is up to the researcher to 

make sense of the groupings and fit them into the bigger picture of the 

analyses and context. In fact, even the number of clusters (here, 3), is 

usually experimented with, to learn what is the best number of groups that 

describes the data or just explore more specific groupings using more 

clusters.

For the next step, we proceeded to build an NLME model based on the 

general Bertalanffy model. The formulation of its analytical solution is 

shown in the following equation:
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With the clusters and the model at hand, we created a new (“mix”) 

population by sampling 10 subjects from the “up” cluster and 40 subjects 

from the “down” cluster. After fitting the model with first-order conditional 

estimate (FOCE), it was used to simulate observations for 1000 populations. 

This enables us to use visual predictive check (VPC) plots, as shown below. 

From left to right, the VPCs refer to the populations “mix”, “down” and “up”, 

respectively.

RESULTS

VPCs are a model diagnostic tool used to test if model predictions aren't too 

far from the data. The three bands represent quantiles from the simulations, 

specifically 90th, 50th and 10th quantiles from top to bottom. The blue lines 

are the medians of each band; and the black lines are the analogous for the 

data. As shown on the left, the model has a reasonable alignment with the 

entire new population of 50 subjects. A similar behavior is seen on the center 

plot. However, on the right, a poor fit is indicated by the discrepancies 

between each pair of blue and black lines; and by the red region at the top 

right, referring to outliers.

𝑣∞ is the steady-state lesion volume by the end of the trend; 𝑡 is time; 𝑣0 is 

the baseline volume; and 𝜔 is a dimensional parameter resulting from the 

reformulation in [2]. The NLME model was kept simple, since the goal is to 

showcase the use of population stratification in PKPD analyses, and not 

develop a state-of-the-art model. An additive residual error term, alongside 

random effects on the parameters (𝑣∞, 𝑣0, 𝜔), was included.
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