

A Workflow for Structural Identifiability Analysis in Pumas

Saugandhika Minnikanti¹, Vijay Ivaturi^{*1,2}

¹Pumas-AI, Inc, Dover, Delaware, USA

²Centre for Pharmacometrics, MCOPS, Manipal Academy of Higher Education, Manipal, India

ICC033

What is Structural Identifiability?

Structural identifiability analyzes whether model parameters can be uniquely estimated from input-output data under ideal conditions.

- **Perfect (noise-free) observations**
- **Infinite time horizon**
- **Known model structure**
- **Known initial conditions**

It's a **theoretical property** of the model structure, independent of actual data quality.

Why check for Structural Identifiability?

Identifiability is a **pre-estimation diagnostic** that checks if the data can inform the model

Common Pitfalls Without Analysis

- **Non-Convergence:** Optimizers "wander" or stall in flat likelihood regions.
- **Initial Value Sensitivity:** Different starting points yield different final estimates.
- **Inflated Uncertainty:** Massive RSE%
- **Implausible Estimates:** To compensate for unresolved parameters.
- **The "Good Fit" Trap:** Accurate predictions from incorrect parameters.

Interpreting the Identifiability

Result	Interpretation
Globally Identifiable	Safe to estimate (unique solution)
Locally identifiable	A finite number of values produce the same output (finite solutions)
Non-identifiable	Cannot estimate (infinite solutions)

Pumas Structural Identifiability Workflow

- Step 1. Extract the ODE System using ModelingToolkit
- Step 2: Define What Is/Can be Measured
- Step 3: Pass ODEsStructuralIdentifiability function
 - The core analysis package implements algorithms to determine identifiability [2].
- Step 4: Result Organization (DataFrames)
- Step 5: Visualization (AlgebraOfGraphics + CairoMakie)
- Step 6: Interpret Results
- Step 7: Reparameterization: Finding What IS Identifiable

It acts as a "stress test" for model equations before parameter estimation phase

Example : 3-Parameter Tumor Burden Model

A patient undergoes chemotherapy for lung cancer, with **tumor size monitored** via CT scans over time. Model [1] describing tumor dynamics during cancer chemotherapy, consists of :

- f — Fraction of cells that are treatment-sensitive (0 to 1)
- g — Growth rate of resistant cells (1/day)
- k — Death rate of sensitive cells under treatment (1/day)

Treatment Sensitive Cells	Treatment Resistance Cells
$N_{\text{sens}} (f) N_0$	$N_{\text{Res}} (1-f) N_0$

exponentially decreases with rate k exponentially increases with rate g

Can rate of cell death (k) and regrowth (g) be **estimated from total tumor size measurements alone?**

Results

Reparameterization Analysis : What is identifiable ?

- $g - k$: The difference between growth and death rates is identifiable
- $g \times k$: The product of growth and death rates is identifiable

Conclusions

- **Identifiable Composites:** g and k are only locally identifiable individually; the net rate difference ($g-k$) and the geometric mean ($g \times k$) are globally identifiable.
- **Clinical Interpretation:** The net tumor behavior can be determined (overall growth vs. shrinkage) even if the underlying individual rates remain unresolved.
- **Measurement Constraints:** Sensitive and resistant cell fractions (f) remain non-identifiable from total tumor volume alone.

Recommendations

- Build Model → Check for Identifiability → Fix Structural Issues → Estimate.
 - Strategic Reparameterization
 - Incorporate Prior Knowledge
 - Optimize Experimental Design
 - Follow up with practical identifiability on actual data [3,4].

References

1. Qi T, Cao Y., *CPT Pharmacometrics Syst Pharmacol.*, 2023
2. Dong, et al. , *Journal of Open Source Software*, 2023
3. Raue, A., et al. *Bioinformatics*, (2009).
4. Wieland, F.-G. et al., *Current Opinion in Systems Biology*, 2021

Contact

saugandhika@pumas.ai
vijay@pumas.ai