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INTRODUCTION

In silico clinical trials (ISCTs) use virtual
populations to represent inter-patient variabllity in
drug response.

NLME models estimate not only parameter
distributions, but also inter-parameter
correlations.

Independent parameter sampling breaks these
correlations, producing unrealistic virtual
patients.

Copula-based sampling preserves multivariate
structure, enabling biologically plausible ISCT
simulations.

This work adopts the ISCT workflow of Cortés-
Rios et al. [1] to demonstrate copula-based
virtual population generation

OBJECTIVES

lllustrate why Iindependent parameter sampling
fails to represent NLME-derived heterogeneity.

Implement Gaussian copula sampling within a
Pumas (Julia)  framework.

Demonstrate preservation of Spearman
correlations after nonlinear transformations.

Validate the approach using a tumor burden
ISCT example from published literature.

METHODS
Copula-based Sampling Algorithm

NLME Model Fitting
(distributions + correlations)

l

Copula Sampling
(correlated samples within [0,1])

l

Inverse CDF Transformation
(e.g., logit-normal)

l

Plausible Virtual Patients

Example: The Tumor Burden Model
 Used a model describing tumor dynamics during
cancer chemotherapy [2].

 The baseline-normalized tumor size (N;) over
time (t) was given as:

Ne = Nofe ™" + No(1 — f)e?™*

e The model Included three NLME-estimated
parameters:

f — treatment-sensitive fraction
g — tumor growth rate
k — cell death rate

Step 1: Distributions and correlations

 Define marginal parameter distributions on a
transformed scale (logit-normal) and specify
NLME-estimated Spearman correlation matrix.
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 Critical correlation: r(f,g) = -0.64

Step 2: Copula sampling

« Construct a Gaussian copula capturing
parameter dependence and generate correlated
uniform samples within [0, 1].

Step 3: Transform uniform samples to target
marginals

Effect of Copula-Preserved Correlations on
Treatment—Control Tumor Burden

 Median and interquartile range across 10,000
virtual patients.

* Independent sampling inflates uncertainty by
allowing biologically implausible parameter
combinations.

 Copula sampling yields more coherent and
interpretable treatment responses.

It U~Uniform(0,1) and F is the CDF of a random
variable, then,

X =F1(U)
follows the distribution with CDF F

Step 4: Transform to original parameter scale
(bounded scale)

Effect of Chemotherapy: Copula vs Independent Sampling
P=a+ (b—a)*logistic(X) 00-
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« This framework enables credible virtual
population generation for ISCTs in Pumas.
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Correlation Validation

 Copula-based virtual population sampling
preserves NLME-estimated rank correlations
between parameters.
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